Stormwater Management Study Little Platte River Watershed

Clay Creek Meadows

Corbyn Lane @ Lake Meadows Dr./Route W

Smithville, Missouri, 64089 Section 12, Township 53 N, Range 36 W

> Prepared On: June 13, 2024

Prepared For: Clay Creek Meadows, LLC 19835 Highway B Edgerton, MO 64444

Prepared by: Lindsay Vogt, PE RL Buford & Associates Engineering, LLC PO Box 14069 Parkville, Missouri 64152

TABLE OF CONTENTS

Title Sheet	Page 1
Table of Contents	Page 2
Bibliography	Page 3
Methodology	Page 4
General Information	Page 5-9

Scope:

A. Identification of Downstream Drainage Issues	Page 8
B. Preliminary Onsite Drainage System	Page 8
C. Drainage Computations	Page 8
D. Flood Control Detention	Page 8-9
E. Stream Corridors	Page 9
F. Stormwater Treatment Requirements	Page 9
G. Corps of Engineers Requirements	Page 9
H. FEMA/DWR Requirements	Page 9
Conclusions and Recommendations	Page 9
Figures	Appendix A
Soils Report	Appendix B
FEMA – Firmette	Appendix C
Hydraflow Hydrographs Analysis	Appendix D

BIBLIOGRAPHY

"STORM WATER MANAGEMENT PLAN-PROCEDURES, FORMAT AND GUIDELINES-PART I - DRAINAGE STUDY", dated June 17, 2002 and revised April 8, 2010.

Division V - Section 5600 – Storm Drainage Systems and Facilities" of the Kansas City Metropolitan Chapter of the American Public Works Association's "Standard Specifications and Design Criteria" dated February 15th, 2006 and all supplements to the APWA Section 5600

APWA 5600 SPECIFICATIONS

http://kcmetro.apwa.net/chapters/kcmetro/specs/APWA5600.pdf

APWA 5600 SUPPLEMENT(S)

http://www.kcmo.org/idc/groups/publicworks/documents/publicworks/specifications_apwa56 00supp1.pdf

APWA MARC BMP MANUAL 2012

http://kcmetro.apwa.net/content/chapters/kcmetro.apwa.net/file/Specifications/BMPManual Oct2012.pdf

GOOGLE MAP

https://maps.google.com/maps?hl=en

FEMA MAP SERVICE CENTER -

https://msc.fema.gov/webapp/wcs/stores/servlet/CategoryDisplay?catalogId=10001&storeId= 10001&categ_oryId=12001&langId=-1&userType=G&type=1&dfirmCatId=12009&future=false

UNITED STATES OF AGRICULTURE – NATURAL RESOURCES CONSERVATION SERVICE http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx

Methodology

This report was prepared in accordance with the provisions of the "STORM WATER MANAGEMENT PLAN-PROCEDURES, FORMAT AND GUIDELINES-PART I - DRAINAGE STUDY", dated June 17, 2002 and revised April 8, 2010. The analytical and design criteria used in the study conform to those of "Division V - Section 5600 – Storm Drainage Systems and Facilities" of the Kansas City Metropolitan Chapter of the American Public Works Association's "Standard Specifications and Design Criteria" dated February 2006 and all supplements to the APWA Section 5600. Based on these criteria, allowable discharge from the development is based on limiting 100- year (1%), 10-year (10%), and 2-Year (50%) post peak development discharge rates and to no more than existing discharge from the site for each respective storm. The following approved methods were used in this report:

- Hydraflow Hydrographs Extension for AutoCAD Civil 3D 2023
- NRCS TR-55 Unit Hydrograph Method
- 2-, 10-, and 100-Year Return Frequency
- 24 hr. Storm Precipitation Depths (TP-40)
- 24 hr. NRCS Type II Rainfall Distribution
- ARC Type II Moisture Conditions
- Runoff Curve Numbers per NRCS TR-55
- APWA 5600 for Time of Concentration and Travel Time.

STORM	PERCENT	RAINFALL DEPTH (in.)
2 Year	50%	3.57
10 Year	10%	5.33
100 Year	1%	8.50

Table 1. Rainfall Depths

General Information

The proposed development on Corbyn Lane between Route W and Lake Meadows Drive is in Smithville, Missouri. The proposed development plan will consist of a townhome Complex of 203 Townhomes on Corbyn Lane and 13 single family homes on Lake Meadows Drive. The site consists of approximately 26.76 acres. See Appendix A for an aerial image of the site along with an aerial of the surrounding area.

Existing Conditions Analysis

The existing site is farmland and native grass in fair condition. Currently there are three field inlets on this parcel connected to the existing storm sewers on Corbyn Lane. Those storm sewers discharge to existing detention areas behind the Clay Creek Townhome complex. The detention areas outfall to city storm sewers and Rock Branch creek which ultimately connects to Smithville Lake. There is a natural low point in the middle of the site that water is conveyed to by overland flow as well as the field inlets for the Northeastern portion of the site. There are also curb inlets along Lake Meadows Dr. to capture runoff from the southern portion of the site. We have included approximately 32 acres of offsite drainage in our analysis.

SUB BASIN DESCRIPTION	OUTFALL SUMMARY	WATERSHED
Existing North	Tract B Detention	Little Platte River
Existing South	Tract C Detention	Little Platte River

Table 2: Existing Conditions Outfalls

Curve Numbers

The land use designation for the site under existing conditions is Open Space – Good Condition, Row Crops, and Paved Streets and Roofs. Based on the land use designation and the information obtained from the NRCS Web Soil Survey, the curve numbers specified in Table 3 have been used to develop a composite curve number for the sub basins. The composite curve numbers calculated for each sub basin are provided in Table 4.

Soil Classification

Soil classifications published by the United States Department of Agriculture/Natural Resources Conservation Service (USDA/NRCS) indicate the existing site is made up of two soil types:

10081 Macksburg silt loam, 5 to 9 percent slopes, HSG C/D

10120 Sharpsburg silt loam, 2 to 5 percent slopes, HSG C

**See Appendix B for a detailed soil report of the proposed development.

Table 3: Curves Numbers based on Land Use and HSG

SOIL TYPE	HSG	LAND USE	CURVE NUMBER
10081	C/D	Open Lawn – Good Condition	76
10081	C/D	Row Crops	90
10081	C/D	Roofs, Pavement	98
10120	С	Open Lawn – Good Condition	74
10120	С	Row Crops	88
10120	С	Roofs, Pavement	98

Table 4. Existing Curve Numbers (Composite)

SUB BASIN	CN	CN	WEIGHTED
DESCRIPTION	(ACRE)	(ACRE)	CN
EXISTING NORTH	88 (7.75)	90 (2.16)	88
EXISTING SOUTH	88 (10.21)	90	89
EXISTING NORTH	75	98	85
OFFISTE	(6.46)	(4.62)	
EXISTING SOUTH	76	98	83
OFFSITE	(12.46)	(6.31)	

Times of Concentration

Runoff from sub basins reach their corresponding outfall locations via a combination of sheet flow, shallow concentrated flow and channel flow. See the Appendix for Time of Concentration calculations and corresponding TR-55 worksheets. The results from the existing conditions model have been provided in the Appendix. A summary of the analysis and results has been provided in Table 5.

OUTFALL	Q ₂ (CFS)	Q ₁₀ (CFS)	Q ₁₀₀ (CFS)
EXISTING NORTH	14.24	25.48	36.94
EXISTING SOUTH	41.54	73.15	91.86
EXISTING TOTAL	55.78	98.63	128.80

Table 5. Existing Conditions Outfall Summary (DETENTION)

Proposed Conditions Analysis

The proposed sub basins have been analyzed under proposed conditions with one retention basin designed to capture and store the runoff from the southern portion of site. This retention pond will be installed as a complement to the walking path that will be extended on site. Runoff that is flowing to the existing south detention basin will be diverted to the retention basin. In the storm events analyzed, a higher peak flow will be generated by the shorter times of concentration due to the increase in impervious area. The existing detention basins will be able to contain and disperse the flow adequately. The proposed outflow consists of the Proposed Retention, Proposed South Detention and Proposed North Detention as outlined on the attached hydrograph report.

Curve Numbers

Impervious areas of pavement and building structures on the site have been given a CN designation of 98.00. Grass areas have been given a CN designation according to soil type.

SUB BASIN	CN	CN	WEIGHTED
DESCRIPTION	(ACRE)	(ACRE)	CN
PROPOSED NORTH	74 (3.96)	98 (5.95)	88
PROPOSED SOUTH	75 (7.81)	98 (11.30)	89
EXISTING NORTH	75	98	85
OFFISTE	(6.46)	(4.62)	
EXISTING SOUTH	76	98	83
OFFSITE	(12.46)	(6.31)	

 Table 6. Proposed Curve Numbers

Times of Concentration

Runoff from sub basins reaches their corresponding outfall locations via a combination of sheet flow, shallow concentrated flow and channel flow. See the Appendix for Time of Concentration calculations and applicable TR-55 worksheets. Refer to Table 7 for a summary of the sub basins under proposed conditions with detention.

OUTFALL	Q ₂ (CFS)	Q ₁₀ (CFS)	Q100 (CFS)
PROPOSED NORTH DETENTION	14.68	25.71	36.90
PROPOSED SOUTH DETENTION	25.28	57.31	78.24
PROPOSED RETENTION	11.19	22.44	33.06
TOTAL	51.15	105.46	148.20

Table 7. Proposed Conditions Hydrology Summary

A. Identification of Downstream Drainage Issues

To date we are not aware of any drainage issues with the downstream flow. There are no current downstream flooding issues. The proposed project will increase impervious areas, therefore, to assure no adverse impact is anticipated in the downstream drainage system, we are proposing to provide detention.

B. Preliminary Onsite Drainage System

See Appendix A for the existing and proposed drainage boundaries. The site will be graded to allow runoff to be contained within the storm sewers to flow to the existing detention basins and new retention pond. A summary of existing and proposed discharge rates and volumes are included in Table 8, Section D.

C. Drainage Computations

See Appendix D for drainage computations for the 2-year, 10-year and 100-year Storm design flows for the proposed site and for each downstream outfall. A summary of existing and proposed discharge rates is included in Table 8, Section D.

D. Flood Control Detention

The proposed project does increase the runoff from the site, yet that runoff is already captured within the existing storm sewers and detention areas offsite. The new storm

sewer system will be diverted to the new retention basin on the south side of the development. Combined outfalls are displayed in Table 8.

OUTFALL	Q ₂ (CFS)	Q ₁₀ (CFS)	Q ₁₀₀ (CFS)
PROPOSED TOTAL	51.15	105.46	148.20
EXISTING TOTAL	55.78	98.63	128.80

Table 8: Allowable/Existing and Proposed Rates

E. Stream Corridors

This section is not applicable.

F. Stormwater Treatment Requirements

This section is not applicable.

G. Corps of Engineers Requirements

The project site does not contain "wetlands" or "waters of the U.S." therefore a 404 permit will not be required.

H. FEMA/DWR Requirements

The existing site lies in Zone X per the Flood Insurance Rate Map, FIRM 29047C0025E, Map Effective April 3, 2015 for Clay County, Missouri, and Incorporated Areas. The FIRM identifies Zone X as "Areas determined to be outside the 0.2% annual chance floodplain".

Conclusions and Recommendations

The proposed Clay Creek Meadows will cause an increase in peak discharge after the improvements are made to the site. The increased discharge volume will be captured in the existing detention basins as well as the proposed retention basin, reducing the overall peak discharge to below existing conditions. We were able to reduce the proposed hydrograph volumes to below existing conditions for the 2-year and 100-year storms.

The proposed redevelopment project meets or exceeds all the required stormwater management criteria set forth by the city of Smithville, Missouri. Based on this information, RL Buford and Associates Engineering, LLC recommends approval of this Stormwater Management Study for Clay Creek Meadows. If you have any questions, please do not hesitate to contact us.

Appendix A - Figures

OTE: PHA	SING SCHEDULI	E IS APP	ROXIMATE	AND WILL	BE DETE	RMINED .	BY MARK	et demand	•
		DEV	ELOPME	ENT DAT	ΓΑ				
PROPOSED ZONING	LAND USE	GROSS ACRES	PROPOSED R/W	OPEN SPACE	NET AREA	SINGLE FAMILY UNITS	SINGLE FAMILY LOTS	AVERAGE GROSS DENSITY DU/AC.	COMMENCE / COMPLETTION DATES
R1D	SINGLE FAMILY RESIDENTIAL	2.40	0.17	N/A	2.23	13	13	5.42	2024-2025
PROPOSED ZONING	LAND USE	GROSS ACRES	PROPOSED R/W	OPEN SPACE	NET AREA	MULTI FAMILY UNITS	MULTI FAMILY LOTS	AVERAGE GROSS DENSITY DU/AC.	COMMENCE / COMPLETTION DATES
R3	MULTI FAMILY RESIDENTIAL	12.94	2.18	0.83	9.93	102	27	7.88	2025-2026
PROPOSED ZONING	LAND USE	GROSS ACRES	PROPOSED R/W	OPEN SPACE	NET AREA	MULTI FAMILY UNITS	MULTI FAMILY LOTS	AVERAGE GROSS DENSITY DU/AC.	COMMENCE / COMPLETTION DATES
R3	MULTI FAMILY RESIDENTIAL	11.42	1.57	N/A	9.85	101	27	8.84	2026-2027
R1D/ R3		26.76	3.92	0.83	22.01	216	67	8.07	

COPYRIGHT 2024 R.	L. BUFORD & ASSOCIATES, LLC			
	R.L. Buford & Associates, LLC Land Surveying - development consultants R.L. BUFORD & Associates, LLC - MO CERT. OF Authority License NO. LS-2010031977 rob@ribuford.com P.O. BOX 14069, PARKVILLE, MO. 64152 (816) 741-6152	SURVEYOR'S CERTIFICATION I HEREBY CERTIFY THAT WE HAVE MADE A SURVEY OF THE PREMISES HEREIN DESCRIBED WHICH MEET OR EXCEED THE CURRENT "MISSOURI MINIMUM STANDARDS FOR PROPERTY BOUNDARY SURVEYS" AS JOINTLY ESTABLISHED BY THE MISSOURI DEPARTMENT OF NATURAL RESOURCES, DIVISION OF GEOLOGY AND LAND SURVEY AND THE MISSOURI BOARD FOR ARCHITECTS, PROFESSIONAL ENGINEERS, PROFESSIONAL LAND SURVEYORS AND LANDSCAPE ARCHITECTS, AND THAT THE RESULTS OF SAID SURVEY ARE REDRESENTED ON THIS DRAWING TO THE RESULTS OF SAID SURVEY ARE REDRESENTED ON THIS DRAWING TO THE RESULTS OF SAID	APPLICANT CLAY CREEK M 19835 HIC EDGERTON,	
for 7LAY CREE	$ \frac{\text{sectwprge. county}}{35-54-33} \xrightarrow{\text{lob no. log no. } 1-23197} \frac{\text{sectwprge. county}}{35-54-33} \xrightarrow{\text{clay}} \frac{\text{lob no. } 1-23197}{\text{lod no. } 1-23197} $		CHWAY B MO 64444	
$PRELIMIN_{2}$	ARY PLAT (SHEET 1 OF 3) DRAWN BY J.K.R.	ROBERT G. YOUNG, PLS-2007000089 DATE		

Appendix B

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Clay County, Missouri**

Overall Drainage Area - Clay Creek

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Ċlay County, Missouri	13
10081—Macksburg silt loam, 5 to 9 percent slopes	13
10120—Sharpsburg silt loam, 2 to 5 percent slopes	14
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	MAP LEGEND			MAP INFORMATION		
Area of Int	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at		
	Area of Interest (AOI)	۵	Stony Spot	1:24,000.		
Soils		0	Very Stony Spot	Warning: Soil Map may not be valid at this scale		
	Soli Map Unit Polygons	\$2	Wet Spot			
~	Soil Map Unit Lines	~	Other	Enlargement of maps beyond the scale of mapping can cause		
	Soil Map Unit Points		Special Line Features	line placement. The maps do not show the small areas of		
Special I	Point Features	Water Features		contrasting soils that could have been shown at a more detailed		
9	Blowout	\sim	Streams and Canals			
X	Borrow Pit	Transportation		Please rely on the bar scale on each map sheet for map		
英	Clay Spot	+++	Rails	measurements.		
\diamond	Closed Depression	~	Interstate Highways	Source of Map: Natural Resources Conservation Service		
X	Gravel Pit	~	US Routes	Web Soil Survey URL:		
0 0 0	Gravelly Spot	\sim	Major Roads	Coordinate System: Web Mercator (EPSG:3857)		
0	Landfill	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator		
Α.	Lava Flow	Backgrou	nd	projection, which preserves direction and shape but distorts		
عليه	Marsh or swamp	March 1	Aerial Photography	Albers equal-area conic projection, should be used if more		
Ŕ	Mine or Quarry			accurate calculations of distance or area are required.		
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as		
0	Perennial Water			of the version date(s) listed below.		
\sim	Rock Outcrop			Soil Survey Area: Clay County, Missouri		
+	Saline Spot			Survey Area Data: Version 24, Aug 22, 2023		
°*°	Sandy Spot			Soil map units are labeled (as space allows) for map scales		
-	Severely Eroded Spot			1:50,000 or larger.		
ô	Sinkhole			Date(s) aerial images were photographed: Aug 30, 2022—Sep		
ò	Slide or Slip			16, 2022		
ø	Sodic Spot			The orthophote or other base man on which the soil lines were		
12				compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
10081	Macksburg silt loam, 5 to 9 percent slopes	34.1	62.2%
10120	Sharpsburg silt loam, 2 to 5 percent slopes	20.7	37.8%
Totals for Area of Interest	,	54.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Clay County, Missouri

10081—Macksburg silt loam, 5 to 9 percent slopes

Map Unit Setting

National map unit symbol: 2qkz7 Elevation: 700 to 1,390 feet Mean annual precipitation: 33 to 41 inches Mean annual air temperature: 50 to 55 degrees F Frost-free period: 175 to 220 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Macksburg and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Macksburg

Setting

Landform: Ridges Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Concave Parent material: Loess

Typical profile

A - 0 to 19 inches: silt loam Bt1 - 19 to 37 inches: silty clay loam Bt2 - 37 to 60 inches: silty clay loam

Properties and qualities

Slope: 5 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 24 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 11.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: C/D Ecological site: R107XB007MO - Loess Upland Prairie Other vegetative classification: Grass/Prairie (Herbaceous Vegetation) Hydric soil rating: No

Minor Components

Higginsville, eroded

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Concave Ecological site: R107XB002MO - Deep Loess Upland Prairie Hydric soil rating: No

Sharpsburg

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Ecological site: R107XB007MO - Loess Upland Prairie Hydric soil rating: No

10120—Sharpsburg silt loam, 2 to 5 percent slopes

Map Unit Setting

National map unit symbol: 2yy7v Elevation: 1,000 to 1,300 feet Mean annual precipitation: 33 to 41 inches Mean annual air temperature: 50 to 55 degrees F Frost-free period: 177 to 220 days Farmland classification: All areas are prime farmland

Map Unit Composition

Sharpsburg and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sharpsburg

Setting

Landform: Hillslopes Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Loess

Typical profile

Ap - 0 to 6 inches: silt loam *A - 6 to 16 inches:* silty clay loam

Bt1 - 16 to 22 inches: silty clay loam *Bt2 - 22 to 46 inches:* silty clay loam *BC - 46 to 58 inches:* silty clay loam *C - 58 to 79 inches:* silty clay loam

Properties and qualities

Slope: 2 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 0.20 in/hr)
Depth to water table: About 45 to 50 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 7.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: C Ecological site: R109XY002MO - Loess Upland Prairie Hydric soil rating: No

Minor Components

Sibley

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Summit Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Convex Ecological site: R109XY002MO - Loess Upland Prairie Hydric soil rating: No

Higginsville, eroded

Percent of map unit: 5 percent Landform: Hillslopes Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope Down-slope shape: Concave Across-slope shape: Concave Ecological site: R109XY002MO - Loess Upland Prairie Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

NOTES TO USERS

2 is for use in administering the National Flood Insurance Program. It does essarily identify all areas subject to flooding, particularly from local i sources of small size. The community map repository should be d for possible updated or additional flood hazard information.

In more datalet information in areas where **Base Flood Elevations** of the standard standard standard standard standard standard standard different standard standard standard standard standard standard standard more standard with the flood insurance Standard (FIG) regord that accompanies M. Users should be avera that BFS shown on the FIRM represent or only and should not be used as the sole source of flood elevation on Accordingly, lood elevation data presented in the FIS report should be regimention with the FIRM for purposes of construction and for flood elevation on accordingly.

ies of the **floodways** were computed at cross sections and interpolated cross sections. The floodways were based on hydraulic considerations and to requirements of the National Flood insurance Program. Floodway and other pertinent floodway data are provided in the Flood Insurance port for this jurisdiction.

areas not in Special Flood Hazard Areas may be protected by **flood** structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood a Study report for information on flood control structures for this on.

jection used in the preparation of this map was NAD 1983 State Plane West, zone 2403. **The Horizontal datum** was NAD 83. GRS1980 L. Differences in datum, spheroid, or projection used in the production of or adjacent jurisdictions may result in slight positional differences in map across jurisdiction boundaries. These differences do not affect the (of this FIRM.

avations on this map are referenced to the North American Vertical Datum . These flood elevations must be compared to structure and ground is referenced to the same vertical adum. For information regarding on between the National Geodetic Vertical Datum of 1929 and the North n Vertical Datum of 1989, with the National Geodetic Survey website at wings.nosa.gov/ or contact the National Geodetic Survey at the following

ation Services ormation \$ 1/NGS12 √NGS12 Geodetic Survey , #9202 st-West Highway pring, Maryland 20910-3282 3-3242

n current elevation, description, and/or location information for **bench** hown on this map, please contact the Information Services Branch of the Geodelic Survey at (**301**) **713-3242**, or visit its website at <u>wngs.noas.gov/</u>.

ap information shown on this FIRM was provided in digital format by the m Service Agency National Agriculture Imagery Program (NAIP), dated 2010, and by the U.S. Geological Survey Digital Orthophoto Quadrangles, 93 and later, produced at a scale of 1.24000.

n updated topographic information, this may reflects more detailed and to detain charant configurations and floodpath delineations than rown on the previous FIRM for this jurisdiction. As a result, the Flood and Floodway Data tables may reflect stream channel distances that differ at is shown on the map. Also, the road to floodplain reliationships for d streams may differ from what is shown on previous maps.

the base lines" depicted on this map represent the hydraulic modeling s that match the flood profiles in the FIS report. As a result of improved thic data the "profile base line," in some cases, may deviate significantly channel centerline or appear outside the SFHA.

te limits shown on this map are based on the best data available at the ublication. Because changes due to annexations or de-annexations may urred after this map was published, map users should contact appropriate ity officials to verify current corporate limit locations.

refer to the separately printed **Map Index** for an overview map of the howing the layout of map panels; community map repeatory addresses; sting of Communities table containing National Flood Insurance Program ℓ each community as well as a listing of the panels on which each ity is located.

the FEMA Map Service Center (MSC) via the FEMA Map Information (e (FMIV) at 1-877-336-3627 for information on available products do with this FIRM Available products may include previously issued of Map Change, a Flood Insurance Study report, and/or digital versions of 2. The MSC may also be reached by Fax at 1-800-336-9620 and its at <u>http://msc/ena.aov/</u>.

ve questions about this map or questions concerning the National Flood e Program in general, please call **1-877-FEMA MAP** (1-877-338-2627) or FEMA website at <u>http://www.fema.gov/business/nfip/</u>.

LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUN BY THE 1% ANNUAL CHANCE FLOOD b) THE 1% annual chance flood (100/wer) flood), also known as the base flood, is the has a 1% chance of being equaled or exceeded in any given year. The Special Flo Area is the area subject to flooding by the 1% annual chance flood. Areas of Spe Hazard include Zones A, AE, AH, AO, RA, A99, V, and VE. The Base Flood Elevat water-surface deviation of the 1% annual chance flood. No Base Flood Elevations determined. Base Flood Elevations determined Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); aver determined. For areas of alluvial fan flooding, velocities also determined. determined. For areas of altival fan flooting, velocities also determined. Special Flood Hazard Area formerly protected from the U% annual chan a flood control system that was subsequently decertified. Zone AR ind the former flood control system is being restored to provide protection 1% annual chance or greater flood. Areas to be protected from 1% annual chance flood by a Federal flood system under construction; no Base Flood Elevations determined. Coastal flood zone with velocity hazard (wave action); no Base Flood Coastal flood zone with velocity hazard (wave action); Base Flood determined //// FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that mu free of encroachment so that the 1% annual chance flood can be carried without s increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood wi depths of less than 1 foot or with drainage areas less than 1 square areas protected by levees from 1% annual chance flood. OTHER AREAS Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAS) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Area 1% annual chance floodplain boundary 0.2% annual chance floodplain boundary Floodway boundary ____ Zone D boundary Boundary dividing Special Flood Hazard Areas of different Bevations, flood depths, or flood velocities. Beneticin, Root Septin, or Root veccies. Class and ON-boundary Distributional, State, or Constr. boundary Distributional, State, or Constr. boundary Sitema Constraints, State Constraints, Use and Constraints Sitema Constraints, Network Intercents Instraints boundary Sitema Constraints, Network Intercents Instraints boundary Sitema Constraints, Network Intercents Instraints boundary Sitema Constraints, State Constraints, State Root Bousdons Instead Vision Teleneous In benefits and states and states Teleneous In benefits and states Sitema Constraints, States Annual Vision Transect line - 23 87°07'45", 32°22'30" Geographic coordinates referenced to the North American 1983 (NAD 83) 4276^{000m}E 1000-meter Universal Transverse Mercator grid values, zone 600000 FT 5000-foot grid ticks: Missouri State Plane coordinate sys zone (FIPSZONE 2403), Transverse Mercator projection Bench mark (see explanation in Notes to Users section of nanel) DX5510 🖌 • M1.5 River Mile Aqueduct, Culvert, Flume, Penstock, or Storm Sewer Road or Railroad Bridge MAP REPOSITORIES Refer to listing of Map Repositories on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP August 3, 2015 EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL For community map revision history prior to countywide mapping, refer to the Comm History table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your insurance as the National Flood Insurance Program at 1-800-638-6620. MAP SCALE 1" = 2000' 1000 0 2000 4000 FEET 300 METER 1200 NFIP PANEL 0025E M FIRM FLOOD INSURANCE RATE I PRC CLAY COUNTY, MISSOURI AND INCORPORATED AR RANGE PANEL 25 OF 350 (SEE LOCATOR DIAGRAM OR MA FOR FIRM PANEL LAYOUT) CONTAINS: INSUR COMMUNITY NUMBER PANEL 290006 0025 295271 0025 SMITHVILLE, CITY OF (0)(0) Notice to User: The Map Number si when placing map orders; the Comm should be used on insure hown below sh unity Number T. IN/ATTOIN/AL MAP NU 0 290470 EFFECTIVE

AUGUST

Federal Emergency Management

Appendix C

Appendix D

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	14.12	2	722	39,587				EXISTING NORTH
2	SCS Runoff	26.15	2	724	81,787				EXISTING SOUTH
3	SCS Runoff	16.60	2	720	37,992				EXISTING NORTH OFFSITE
4	SCS Runoff	26.67	2	718	53,340				EXISTING SOUTH OFFSITE
5	SCS Runoff	18.83	2	716	38,065				PROPOSED NORTH
6	SCS Runoff	37.85	2	716	76,675				PROPOSED SOUTH
7	Combine	30.01	2	720	77,579	1, 3,			EXISTING NORTH TOTAL
8	Combine	46.83	2	718	135,127	2, 4,			EXISTING SOUTH TOTAL
9	Combine	35.24	2	718	76,056	3, 5,			PROPOSED NORTH TOTAL
10	Combine	64.13	2	718	130,016	4, 6,			PROPOSED SOUTH TOTAL
11	Reservoir	14.24	2	730	77,572	7	963.87	18,506	NORTH DETENTION
12	Reservoir	41.54	2	722	135,127	8	956.99	4,562	SOUTH DETENTION
13	Reservoir	14.68	2	724	76,050	9	963.93	19,461	NORTH DET. PROPOSED
14	Reservoir	25.28	2	718	53,341	4	956.06	1,267	SOUTH DET PROPOSED
15	Reservoir	11.19	2	724	53,334	14	963.56	13,406	PROPOSED RETENTION
Cla	y Creek Mead	lows.gpw	,		Return P	eriod: 2 Ye	ar	Thursday, 0	06 / 13 / 2024

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

EXISTING NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 14.12 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 39,587 cuft
Drainage area	= 9.910 ac	Curve number	= 88
Basin Slope	= 1.5 %	Hydraulic length	= 656 ft
Tc method	= LAG	Time of conc. (Tc)	= 14.10 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

EXISTING SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 26.15 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 81,787 cuft
Drainage area	= 18.840 ac	Curve number	= 89
Basin Slope	= 2.0 %	Hydraulic length	= 1076 ft
Tc method	= LAG	Time of conc. (Tc)	= 17.45 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 3

EXISTING NORTH OFFSITE

Hydrograph type =	SCS Runoff	Peak discharge	= 16.60 cfs
Storm frequency =	2 yrs	Time to peak	= 12.00 hrs
Time interval =	2 min	Hyd. volume	= 37,992 cuft
Drainage area =	11.080 ac	Curve number	= 85*
Basin Slope =	3.8 %	Hydraulic length	= 394 ft
Tc method =	TR55	Time of conc. (Tc)	= 8.20 min
Total precip. =	2.20 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.618 x 98) + (6.462 x 75)] / 11.080

4

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

EXISTING SOUTH OFFSITE

Hydrograph type =	SCS Runoff	Peak discharge	= 26.67 cfs
Storm frequency =	2 yrs	Time to peak	= 11.97 hrs
Time interval =	2 min	Hyd. volume	= 53,340 cuft
Drainage area =	18.770 ac	Curve number	= 83*
Basin Slope =	2.0 %	Hydraulic length	= 100 ft
Tc method =	User	Time of conc. (Tc)	= 5.00 min
Total precip. =	2.20 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(6.310 x 98) + (12.460 x 76)] / 18.770

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 5

PROPOSED NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 18.83 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 38,065 cuft
Drainage area	= 9.910 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 6

PROPOSED SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 37.85 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 76,675 cuft
Drainage area	= 18.840 ac	Curve number	= 89
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

7

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 7

EXISTING NORTH TOTAL

Hydrograph type	= Combine	Peak discharge	= 30.01 cfs
Storm frequency	= 2 yrs	lime to peak	= 12.00 nrs
Time interval	= 2 min	Hyd. volume	= 77,579 cuft
Inflow hyds.	= 1, 3	Contrib. drain. area	= 20.990 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 8

EXISTING SOUTH TOTAL

Hydrograph type	= Combine	Peak discharge	= 46.83 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 135,127 cuft
Inflow hyds.	= 2, 4	Contrib. drain. area	= 37.610 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

PROPOSED NORTH TOTAL

Hydrograph type	= Combine	Peak discharge	= 35.24 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 76,056 cuft
Inflow hyds.	= 3, 5	Contrib. drain. area	= 20.990 ac

Thursday, 06 / 13 / 2024

10

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 10

PROPOSED SOUTH TOTAL

Hydrograph type	= Combine	Peak discharge	= 64.13 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 130,016 cuft
Inflow hyds.	= 4,6	Contrib. drain. area	= 37.610 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 11

NORTH DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 14.24 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 77,572 cuft
Inflow hyd. No.	= 7 - EXISTING NORTH TOTAL	Max. Elevation	= 963.87 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 18,506 cuft

Storage Indication method used.

12

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

SOUTH DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 41.54 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 135,127 cuft
Inflow hyd. No.	= 8 - EXISTING SOUTH TOTAL	Max. Elevation	= 956.99 ft
Reservoir name	= SOUTH BASIN	Max. Storage	= 4,562 cuft

Storage Indication method used.

13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 13

NORTH DET. PROPOSED

Hydrograph type	= Reservoir	Peak discharge	= 14.68 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 76,050 cuft
Inflow hyd. No.	= 9 - PROPOSED NOR	TH TOTAMax. Elevation	= 963.93 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 19,461 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 14

SOUTH DET PROPOSED

Hydrograph type	= Reservoir	Peak discharge	= 25.28 cfs
Storm frequency	= 2 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 53,341 cuft
Inflow hyd. No.	= 4 - EXISTING SOUTH	OFFSITMEax. Elevation	= 956.06 ft
Reservoir name	= SOUTH BASIN	Max. Storage	= 1,267 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

PROPOSED RETENTION

Hydrograph type	= Reservoir	Peak discharge	= 11.19 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 53,334 cuft
Inflow hyd. No.	= 14 - SOUTH DET PRO	DPOSEDMax. Elevation	= 963.56 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 13,406 cuft

Storage Indication method used.

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	36.43	2	722	103,882				EXISTING NORTH
2	SCS Runoff	65.75	2	724	209,165				EXISTING SOUTH
3	SCS Runoff	46.65	2	718	107,887				EXISTING NORTH OFFSITE
4	SCS Runoff	78.52	2	716	159,984				EXISTING SOUTH OFFSITE
5	SCS Runoff	47.86	2	716	99,887				PROPOSED NORTH
6	SCS Runoff	93.30	2	716	196,092				PROPOSED SOUTH
7	Combine	80.93	2	720	211,769	1, 3,			EXISTING NORTH TOTAL
8	Combine	130.19	2	718	369,149	2, 4,			EXISTING SOUTH TOTAL
9	Combine	93.15	2	718	207,773	3, 5,			PROPOSED NORTH TOTAL
10	Combine	171.82	2	716	356,077	4, 6,			PROPOSED SOUTH TOTAL
11	Reservoir	25.48	2	732	211,762	7	965.84	63,135	NORTH DETENTION
12	Reservoir	73.15	2	728	369,149	8	960.12	43,623	SOUTH DETENTION
13	Reservoir	25.71	2	726	207,767	9	965.89	64,417	NORTH DET. PROPOSED
14	Reservoir	57.31	2	720	159,985	4	958.34	13,625	SOUTH DET PROPOSED
15	Reservoir	22.44	2	730	159,978	14	965.20	47,234	PROPOSED RETENTION
Cla	y Creek Mead	lows.gpw			Return P	eriod: 10 Y	'ear	Thursday, C	6 / 13 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

EXISTING NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 36.43 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 103,882 cuft
Drainage area	= 9.910 ac	Curve number	= 88
Basin Slope	= 1.5 %	Hydraulic length	= 656 ft
Tc method	= LAG	Time of conc. (Tc)	= 14.10 min
Total precip.	= 4.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

EXISTING SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 65.75 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 209,165 cuft
Drainage area	= 18.840 ac	Curve number	= 89
Basin Slope	= 2.0 %	Hydraulic length	= 1076 ft
Tc method	= LAG	Time of conc. (Tc)	= 17.45 min
Total precip.	= 4.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 3

EXISTING NORTH OFFSITE

Hydrograph type	= SCS Runoff	Peak discharge	= 46.65 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 107,887 cuft
Drainage area	= 11.080 ac	Curve number	= 85*
Basin Slope	= 3.8 %	Hydraulic length	= 394 ft
Tc method	= TR55	Time of conc. (Tc)	= 8.20 min
Total precip.	= 4.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.618 x 98) + (6.462 x 75)] / 11.080

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

EXISTING SOUTH OFFSITE

Hydrograph type	= SCS Runoff	Peak discharge	= 78.52 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 159,984 cuft
Drainage area	= 18.770 ac	Curve number	= 83*
Basin Slope	= 2.0 %	Hydraulic length	= 100 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(6.310 x 98) + (12.460 x 76)] / 18.770

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 5

PROPOSED NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 47.86 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 99,887 cuft
Drainage area	= 9.910 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 6

PROPOSED SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 93.30 cfs
Storm frequency	= 10 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 196,092 cuft
Drainage area	= 18.840 ac	Curve number	= 89
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.25 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 7

EXISTING NORTH TOTAL

Hydrograph type	= Combine	Peak discharge	= 80.93 cfs
Storm frequency Time interval	= 10 yrs = 2 min	lime to peak Hyd. volume	= 12.00 hrs = 211,769 cuft
Inflow hyds.	= 1, 3	Contrib. drain. area	= 20.990 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 8

EXISTING SOUTH TOTAL

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 130.19 cfs = 11.97 hrs
Time interval	$= 2 \min$	Hyd. volume	= 369,149 cuft
Inflow hyds.	= 2, 4	Contrib. drain. area	= 37.610 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

PROPOSED NORTH TOTAL

e = 93.15 cfs
= 11.97 hrs
= 207,773 cuft
area = 20.990 ac

26

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 10

PROPOSED SOUTH TOTAL

Hydrograph type Storm frequency	= Combine = 10 vrs	Peak discharge Time to peak	= 171.82 cfs = 11 93 brs
Time interval	$= 2 \min$	Hyd. volume	= 356,077 cuft
Inflow hyds.	= 4, 6	Contrib. drain. area	= 37.610 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 11

NORTH DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 25.48 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.20 hrs
Time interval	= 2 min	Hyd. volume	= 211,762 cuft
Inflow hyd. No.	= 7 - EXISTING NORTH TOTA	ALMax. Elevation	= 965.84 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 63,135 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

SOUTH DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 73.15 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.13 hrs
Time interval	= 2 min	Hyd. volume	= 369,149 cuft
Inflow hyd. No.	= 8 - EXISTING SOUTH	TOTALMax. Elevation	= 960.12 ft
Reservoir name	= SOUTH BASIN	Max. Storage	= 43,623 cuft

Storage Indication method used.

29

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 13

NORTH DET. PROPOSED

Hydrograph type	= Reservoir	Peak discharge	= 25.71 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 207,767 cuft
Inflow hyd. No.	= 9 - PROPOSED NORT	TH TOTAMax. Elevation	= 965.89 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 64,417 cuft

Storage Indication method used.

30

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 14

SOUTH DET PROPOSED

Hydrograph type	= Reservoir	Peak discharge	= 57.31 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 159,985 cuft
Inflow hyd. No.	= 4 - EXISTING SOUTH	I OFFSITMEax. Elevation	= 958.34 ft
Reservoir name	= SOUTH BASIN	Max. Storage	= 13,625 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

PROPOSED RETENTION

Hydrograph type	= Reservoir	Peak discharge	= 22.44 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 159,978 cuft
Inflow hyd. No.	= 14 - SOUTH DET PR	OPOSEDMax. Elevation	= 965.20 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 47,234 cuft

Storage Indication method used.

PROPOSED RETENTION

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	77.10	2	722	228,658				EXISTING NORTH
2	SCS Runoff	137.44	2	724	453,950				EXISTING SOUTH
3	SCS Runoff	103.09	2	718	247,959				EXISTING NORTH OFFSITE
4	SCS Runoff	178.58	2	716	378,768				EXISTING SOUTH OFFSITE
5	SCS Runoff	100.42	2	716	219,864				PROPOSED NORTH
6	SCS Runoff	192.91	2	716	425,578				PROPOSED SOUTH
7	Combine	174.97	2	720	476,617	1, 3,			EXISTING NORTH TOTAL
8	Combine	285.77	2	718	832,719	2, 4,			EXISTING SOUTH TOTAL
9	Combine	199.58	2	718	467,822	3, 5,			PROPOSED NORTH TOTAL
10	Combine	371.48	2	716	804,347	4, 6,			PROPOSED SOUTH TOTAL
11	Reservoir	36.94	2	736	476,611	7	968.97	166,363	NORTH DETENTION
12	Reservoir	91.86	2	736	832,718	8	962.79	191,782	SOUTH DETENTION
13	Reservoir	36.90	2	730	467,815	9	968.95	165,849	NORTH DET. PROPOSED
14	Reservoir	78.24	2	722	378,769	4	960.79	67,346	SOUTH DET PROPOSED
15	Reservoir	33.06	2	748	378,762	14	967.78	121,962	PROPOSED RETENTION
Cla	y Creek Mead	lows.gpw			Return P	eriod: 100	Year	Thursday, C	06 / 13 / 2024

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 1

EXISTING NORTH

Hydrograph type	= SCS Runoff	Peak discharge	= 77.10 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 228,658 cuft
Drainage area	= 9.910 ac	Curve number	= 88
Basin Slope	= 1.5 %	Hydraulic length	= 656 ft
Tc method	= LAG	Time of conc. (Tc)	= 14.10 min
Total precip.	= 7.95 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 2

EXISTING SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 137.44 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 453,950 cuft
Drainage area	= 18.840 ac	Curve number	= 89
Basin Slope	= 2.0 %	Hydraulic length	= 1076 ft
Tc method	= LAG	Time of conc. (Tc)	= 17.45 min
Total precip.	= 7.95 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

35

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 3

EXISTING NORTH OFFSITE

Hydrograph type	= SCS Runoff	Peak discharge	= 103.09 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 247,959 cuft
Drainage area	= 11.080 ac	Curve number	= 85*
Basin Slope	= 3.8 %	Hydraulic length	= 394 ft
Tc method	= TR55	Time of conc. (Tc)	= 8.20 min
Total precip.	= 7.95 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(4.618 x 98) + (6.462 x 75)] / 11.080

36

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 4

EXISTING SOUTH OFFSITE

Hydrograph type	= SCS Runoff	Peak discharge	= 178.58 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 378,768 cuft
Drainage area	= 18.770 ac	Curve number	= 83*
Basin Slope	= 2.0 %	Hydraulic length	= 100 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.95 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(6.310 x 98) + (12.460 x 76)] / 18.770

Thursday, 06 / 13 / 2024

37

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 5

PROPOSED NORTH

Hydrograph type =	= SCS Runoff	Peak discharge	= 100.42 cfs
Storm frequency =	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 219,864 cuft
Drainage area	= 9.910 ac	Curve number	= 88
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.95 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 6

PROPOSED SOUTH

Hydrograph type	= SCS Runoff	Peak discharge	= 192.91 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 425,578 cuft
Drainage area	= 18.840 ac	Curve number	= 89
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.95 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Thursday, 06 / 13 / 2024

39
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 7

EXISTING NORTH TOTAL

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 174.97 cfs = 12 00 brs
Time interval	$= 2 \min$	Hyd. volume	= 476,617 cuft
Inflow hyds.	= 1, 3	Contrib. drain. area	= 20.990 ac

40

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 8

EXISTING SOUTH TOTAL

Hydrograph type	= Combine	Peak discharge	= 285.77 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 832,719 cuft
Inflow hyds.	= 2, 4	Contrib. drain. area	= 37.610 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 9

PROPOSED NORTH TOTAL

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 199.58 cfs = 11.97 hrs
Time interval	= 2 min	Hyd. volume	= 467,822 cuft
Inflow hyds.	= 3, 5	Contrib. drain. area	= 20.990 ac

42

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 10

PROPOSED SOUTH TOTAL

Hydrograph type	= Combine	Peak discharge	= 371.48 cfs
Storm frequency	= 100 yrs	Time to peak	= 11.93 hrs
Time interval	= 2 min	Hyd. volume	= 804,347 cuft
Inflow hyds.	= 4,6	Contrib. drain. area	= 37.610 ac

43

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 11

NORTH DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 36.94 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 476,611 cuft
Inflow hyd. No.	= 7 - EXISTING NORTH TOTAL	Max. Elevation	= 968.97 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 166,363 cuft

Storage Indication method used.

44

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 12

SOUTH DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 91.86 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.27 hrs
Time interval	= 2 min	Hyd. volume	= 832,718 cuft
Inflow hyd. No.	= 8 - EXISTING SOUTH TOTAL	Max. Elevation	= 962.79 ft
Reservoir name	= SOUTH BASIN	Max. Storage	= 191,782 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 13

NORTH DET. PROPOSED

Hydrograph type	= Reservoir	Peak discharge	= 36.90 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.17 hrs
Time interval	= 2 min	Hyd. volume	= 467,815 cuft
Inflow hyd. No.	= 9 - PROPOSED NORT	H TOTAMax. Elevation	= 968.95 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 165,849 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 14

SOUTH DET PROPOSED

Hydrograph type	= Reservoir	Peak discharge	= 78.24 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 378,769 cuft
Inflow hyd. No.	= 4 - EXISTING SOUTI	H OFFSITMEax. Elevation	= 960.79 ft
Reservoir name	= SOUTH BASIN	Max. Storage	= 67,346 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2024

Hyd. No. 15

PROPOSED RETENTION

Hydrograph type	= Reservoir	Peak discharge	= 33.06 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.47 hrs
Time interval	= 2 min	Hyd. volume	= 378,762 cuft
Inflow hyd. No.	= 14 - SOUTH DET PR	ROPOSEDMax. Elevation	= 967.78 ft
Reservoir name	= NORTH BASIN	Max. Storage	= 121,962 cuft

Storage Indication method used.

